• Users Online: 106
  • Print this page
  • Email this page
Year : 2022  |  Volume : 16  |  Issue : 4  |  Page : 397-404

Human leukocyte antigen association with anti-SARS-CoV-2 spike protein antibody seroconversion in renal allograft recipients - An observational study

Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Correspondence Address:
Prof. Narayan Prasad
Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijot.ijot_28_22

Rights and Permissions

Cellular and humoral responses are required for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) eradication. Antigen-presenting cells load SARS-CoV-2 peptides on human leukocyte antigen (HLA) with different avidities and present to T- and B-cells for imposing humoral and cellular responses. Due to immunosuppression, renal transplant recipient (RTR) patients are speculated to poorly form the antibody against the SARS-CoV-2. Therefore, determining the association of specific HLA alleles with anti-SARS-CoV-2 spike protein antibody formation will be helpful in managing the RTR having specific HLA alleles from SARS-CoV-2 infection and vaccination. Materials and Methods: In this study, anti-SARS-CoV-2 spike protein antibody in 161 RTRs was determined by the chemiluminescent microparticle immunoassay methods, and HLA alleles were determined by the polymerase chain reaction-single-strand oligonucleotide methods and analyzed to study the HLA allele association with anti-SARS-CoV-2 spike protein-specific humoral response and severity of COVID-19 symptoms in recently SARS-CoV-2-infected RTRs. Results: The anti-SARS-CoV-2 spike protein specific antibody seroconversion rate in RTRs was 90.06% with a median titer of 751.80 AU/ml. The HLA class I alleles, A*11 in 22.1%, A*24 in 21.37%, A*33 in 20.68%, HLA B*15 in 11%, B*07 in 8.27%, HLA-C*30 in 20.93%, C*70 in 23.25% and HLA Class II alleles, DRB1*07 in 18.62%, DRB1*04 in 13.8%, HLA-DRB1*10 in 14.48%, HLA-DQA1*50 in 32.55% of RTRs were associated with the seroconversion. The mean SARS-CoV-2 clearance time was 18.25 ± 8.14 days. Conclusions: RTRs with SARS-CoV-2 infection developed a robust seroconversion rate of 90.0% and different alleles of HLA-B, DRB1, and DQA1 were significantly associated with the seroconversion.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded13    
    Comments [Add]    

Recommend this journal